Cyclic nucleotide-gated channels of rat olfactory receptor cells: divalent cations control the sensitivity to cAMP

نویسندگان

  • J W Lynch
  • B Lindemann
چکیده

cAMP-gated channels were studied in inside-out membrane patches excised from the apical cellular pole of isolated olfactory receptor cells of the rat. In the absence of divalent cations the dose-response curve of activation of patch current by cAMP had a KM of 4.0 microM at -50 mV and of 2.5 microM at +50 mV. However, addition of 0.2 or 0.5 mM Ca2+ shifted the KM of cAMP reversibly to the higher cAMP concentrations of 33 or 90 microM, respectively, at -50 mV. Among divalent cations, the relative potency for inducing cAMP affinity shifts was: Ca2+ > Sr2+ > Mn2+ > Ba2+ > Mg2+, of which Mg2+ (up to 3 mM) did not shift the KM at all. This potency sequence corresponds closely to that required for the activation of calmodulin. However, the Ca(2+)-sensitivity is lower than expected for a calmodulin-mediated action. Brief (60 s) transient exposure to 3 mM Mg2+, in the absence of other divalent cations, had a protective effect in that following washout of Mg2+, subsequent exposure to 0.2 mM Ca2+ no longer caused affinity shifts. This protection effect did not occur in intact cells and was probably a consequence of patch excision, possibly representing ablation of a regulatory protein from the channel cyclic nucleotide binding site. Thus, the binding of divalent cations, probably via a regulatory protein, controls the sensitivity of the cAMP-gated channels to cAMP. The influx of Ca2+ through these channels during the odorant response may rise to a sufficiently high concentration at the intracellular membrane surface to contribute to the desensitization of the odorant-induced response. The results also indicate that divalent cation effects on cyclic nucleotide-gated channels may depend on the sequence of pre-exposure to other divalent cations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Both external and internal calcium reduce the sensitivity of the olfactory cyclic-nucleotide-gated channel to CAMP.

In vertebrate olfaction, odorous stimuli are first transduced into an electrical signal in the cilia of olfactory receptor neurons. Many odorants cause an increase in ciliary cAMP, which gates cationic channels in the ciliary membrane. The resulting influx of Ca2+ and Na+ produces a depolarizing receptor current. Modulation of the cyclic-nucleotide-gated (CNG) channels is one mechanism of adjus...

متن کامل

The Ca-activated Cl Channel and its Control in Rat Olfactory Receptor Neurons

Odorants activate sensory transduction in olfactory receptor neurons (ORNs) via a cAMP-signaling cascade, which results in the opening of nonselective, cyclic nucleotide-gated (CNG) channels. The consequent Ca2+ influx through CNG channels activates Cl channels, which serve to amplify the transduction signal. We investigate here some general properties of this Ca-activated Cl channel in rat, as...

متن کامل

A Point Mutation in the Pore Region Alters Gating, Ca2+Blockage, and Permeation of Olfactory Cyclic Nucleotide–Gated Channels

Upon stimulation by odorants, Ca(2+) and Na(+) enter the cilia of olfactory sensory neurons through channels directly gated by cAMP. Cyclic nucleotide-gated channels have been found in a variety of cells and extensively investigated in the past few years. Glutamate residues at position 363 of the alpha subunit of the bovine retinal rod channel have previously been shown to constitute a cation-b...

متن کامل

Heteromeric olfactory cyclic nucleotide-gated channels: a subunit that confers increased sensitivity to cAMP.

Olfactory receptor neurons respond to odorant stimulation with a rapid increase in intracellular cAMP that opens cyclic nucleotide-gated (cng) cation channels. cng channels in rat olfactory neurons are activated by cAMP in the low micromolar range and are outwardly rectifying. The cloned rat olfactory cng channel (rOCNC1), however, is much less sensitive to cAMP and exhibits very weak rectifica...

متن کامل

Properties of cyclic nucleotide-gated channels mediating olfactory transduction. Activation, selectivity, and blockage

Cyclic nucleotide-gated channels (cng channels) in the sensory membrane of olfactory receptor cells, activated after the odorant-induced increase of cytosolic cAMP concentration, conduct the receptor current that elicits electrical excitation of the receptor neurons. We investigated properties of cng channels from frog and rat using inside-out and outside-out membrane patches excised from isola...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 103  شماره 

صفحات  -

تاریخ انتشار 1994